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]1 Introduction

What is induction? Induction is a type of proof used in many problems. The idea behind
the proof is like a set of dominoes.

You first prove that it works for what we call the base case, which is the first, or
sometimes smallest, value that the problem asks for. Next, you perform the inductive
step. You assume that it works for n, and prove that it works for n + 1. Since you
proved the base case, you proved n + 1, and by proving n + 1, you proved n + 2, and this
continues forever.

Definition 1.1. Finding and showing that the first value possible works is called the
base case.

Definition 1.2. Assuming n is true, showing that n+1 is also true is called the inductive
step.

]1.1 Proof Examples

Here is how a basic proof would look like.

Example 1.3

The base case is base case here. It works because show the base case works here.
Now we must show the inductive step. We know that it works for the original
formula. We show that it works for n + 1. Prove the inductive step here. We are
done.

]2 Engineer’s Induction

Engineer’s Induction is not a valid proof. Why are we learning about this though? It
is actually very helpful in short answer contests. The idea behind it is very similar to
induction, except you remove all the “proof” part of it. You have to test out small values
and find a pattern, assume it’s true, find the answer to the problem using that pattern.
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Example 2.1 (2021 AMC 10)

Which of the following is equivalent to

(2 + 3)(22 + 32)(24 + 34)(28 + 38)(216 + 316)(232 + 332)(264 + 364)?

(A) 3127+2127 (B) 3127+2127+2 ·363+3 ·263 (C) 3128−2128 (D) 3128+
2128 (E) 5127

Solution. Lets try to compute the first few values multiplied. If we just look at the first
term, its 2 + 3 = 5. If we look at the first and second, we get 5 · 13 = 65. Examining the
answer choices, we notice that these form a pattern, that 32 − 22 = 5 and 34 − 24 = 65.
By Engineer’s Induction, our answer for the problem should be 3128 − 2128 or C .

Let’s look at one more problem, which is significantly hard without this.

Example 2.2 (2021 ARML Local)

Define a sequence as a1 = x for some real number x and

an = nan−1 + (n− 1)(n!(n− 1)!− 1)

for integers n ≥ 2. Given that a2021 = (2021! + 1)2 + 2020!, and given that x =
p

q
,

where p and q are positive integers whose greatest common divisor is 1, compute
p + q.

Solution. Let’s try to find a2, a3, a4 in terms of a1. a2 will be 2x+(2−1)(2!·1!−1) = 2x+1,
a3 will be 3(2x+1)+(3−1)(3!·2!−1) = 6x+25, and a4 will be 4(6x+25)+(4−1)(4!·3!−1) =
24x + 529.

Notice that the coefficient of x in the term an is n!. The constant term is a per-
fect square, and we notice it is 02 for a1, 12 for a2, 52 for a3, and 232 for a4. These are
all 1 less than n!. So we claim that an = n! · x + (n!− 1)2. Now we just need to solve for
x, because we know a2021 = 2021!x + (2021!− 1)2. We get

2021!x+(2021!−1)2 = (2021!+1)2+2020! =⇒ (2021!+1)2−(2021!−1)2 = 2021!x−2020!.

Notice the left hand side is just 4× 2021!, which you get when you expand. We can also
factor out a 2020! from the right hand side, to get

4× 2021! = 2020!(2021x− 1).

We can divide both sides by 2020! to get

4 · 2021 = 2021x− 1 =⇒ 2021x = 8085 =⇒ x =
8085

2021
=⇒ 8085 + 2021 =⇒ 10106 .

]2.1 Exercises

Exercise 2.3 (NICE Spring 2021). Fifty rooms of a castle are lined in a row. The first
room contains 100 knights, while the remaining 49 rooms contain one knight each. These
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knights wish to escape the castle by breaking the barriers between consecutive rooms,
ending with the barrier from room 50 to the outside.

At the stroke of midnight, each knight in the ith room begins breaking the barrier
between the ith and (i + 1)st rooms, where we count the 51st room as the exterior. Each
person works at a constant rate and is able to break down a barrier in 1 hour, and once a
group of knights breaks down the ith barrier, they immediately join the knight breaking
down the (i + 1)st barrier.

The number of hours it takes for the knights to escape the castle is m
n , where m and n

are positive relatively prime integers. Compute the product mn.

Exercise 2.4 (PUMaC 2018). If a1, a2, . . . is a sequence of real numbers such that for

all n,
n∑

k=1

ak
(
k
n

)2
= 1, find the smallest n such that an < 1

2018 .

Exercise 2.5 (OMO 2018). A mouse has a wheel of cheese which is cut into 2018 slices.
The mouse also has a 2019-sided die, with faces labeled 0, 1, 2, . . . , 2018, and with each
face equally likely to come up. Every second, the mouse rolls the dice. If the dice lands
on k, and the mouse has at least k slices of cheese remaining, then the mouse eats k
slices of cheese; otherwise, the mouse does nothing. What is the expected number of
seconds until all the cheese is gone?

]3 Basic Examples of Induction

In this section, we will go over basic examples of induction which require just a simple
understanding of the definition. Some of these identities might be familiar from our
summations handout.

Example 3.1 (Sum of First N Positive Integers)

Prove that 1 + 2 + · · ·+ n = n(n+1)
2 .

Proof. The base case is n = 1. We know that 1(1+1)
2 = 1, which means the base case is

true. Now we must perform the inductive step. We assume it’s true for n, and prove
that it works for n + 1. We are provided

1 + 2 + · · ·+ n =
n(n + 1)

2
.

Adding n + 1 to both sides, we get

1 + 2 + · · ·+n+ (n+ 1) =
n(n + 1)

2
+n+ 1 =⇒ n2 + n + 2n + 2

2
=⇒ (n + 1)(n + 2)

2
,

which completes our inductive step since by the formula, it should be (n+1)(n+1+1)
2 , which

is what we got.

Let’s look at one more example before we get into more complex induction.

Example 3.2

Prove that for any positive integer number n, n3 + 2n is divisible by 3.

4

https://thecalt.com/handouts/summations.pdf


Rohan Garg (May 2021) Induction

Proof. The base case is n = 1. Since 13 + 2 · 1 = 3, the base case is true. Now we prove
the inductive step. We know that for n + 1 the expression will be (n + 1)3 + 2(n + 1) =
n3 + 3n2 + 5n + 3. Notice that we assumed n3 + 2n is divisible by 3, so we can write the
expression as

(n3 + 2n) + (3n2 + 3n + 3) =⇒ (n3 + 2n) + 3(n2 + n + 1).

We are done, as the expression 3(n2 + n + 1) is a multiple of 3 and we already know
n3 + 2n is divisible by 3.

]4 More Induction

In this section, we will examine different types of induction that are used in different
problems.

]4.1 Base Case Is Not 1

Many induction problems have cases where the base case is not 1. In these, we perform
the same steps except the base case is different. Let’s look at one example.

Example 4.1

Prove that n2 < 2n for sufficiently large values n.

Proof. What is a “sufficiently large” value of n? It means that after we reach the least
value of n that works, every value after that will work as well. If we just try values,
we get the least value of n to be 5. That is our base case. The base case is true, since
32 > 25. Now we perform the inductive step. We need to show

(n + 1)2 < 2n+1.

Expanding (n + 1)2, we get n2 + 2n + 1. Then, we can write the inequality

n2+2n+1 < n2+2n+n =⇒ n2+2n+1 < n2+3n =⇒ n2+2n+1 < n2+n2 =⇒ n2+2n+1 < 2n2.

If you don’t understand how we did that, notice that n ≥ 5 so n > 1 and n2 > 3n. Now,
we can use the inductive step, which says n2 < 2n and substitute this into our inequality
to get

n2 + 2n + 1 < 2(2n) =⇒ n2 + 2n + 1 < 2n+1 =⇒ (n + 1)2 < 2n+1,

as desired.

]4.2 Strong Induction

Strong induction is a very useful type of induction. What is it? Strong induction is
similar to normal induction. Here is the process.

1. Show the base case is true.

2. This is where strong induction differs from normal induction. We assume its true
for ALL values from 1 to k to prove it is true for k + 1.

Let’s look at an example.
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Example 4.2 (Fundamental Theorem of Arithmetic)

Every integer n ≥ 2 can be written uniquely as the product of prime numbers.

Proof. The base case is n = 2. This is prime, so it is true. We assume it is true for
2, 3, 4, . . . , n. If n + 1 is prime, we are already done. Else, we can express it as pq, where
1 < p, q < n. We assumed every value between 2 and n works, so p and q can be expressed
as a product of prime numbers. Thus, pq, or n, can be expressed uniquely as the product
of prime numbers.

This was a quite simple example with strong induction, but many harder problems
can be solved using this. Let’s try one, using another type of induction.

]4.2.1 More than one base case (Strong Induction)

The following problem will require you to prove multiple base cases. This is a useful
technique.

Example 4.3 (USAJMO 2011)

A word is defined as any finite string of letters. A word is a palindrome if it reads the
same backwards and forwards. Let a sequence of words W0,W1,W2, ... be defined
as follows: W0 = a,W1 = b, and for n ≥ 2, Wn is the word formed by writing
Wn−2 followed by Wn−1. Prove that for any n ≥ 1, the word formed by writing
W1,W2,W3, ...,Wn in succession is a palindrome.

Proof. The base case for this proof is W1 and W1W2. These words are b and bab
respectively, which are both palindromes. We proceed with the inductive step. Notice
that Wn = Wn−2Wn−1, so we need to show

W1W2 . . .Wn−1Wn−2Wn−1

is a palindrome. If this is a palindrome, we can reverse it and show that the reversed
word is the palindrome. The reversed word is Wn−1Wn−2Wn−1 . . .W2W1. We also know
by the inductive step that W1W2 . . .Wn−1 is a palindrome so we can reverse it in our
word to get

Wn−1Wn−2W1W2 . . .Wn−1.

The inductive step also gives us W1W2 . . .Wn−3 is a palindrome so we can reverse that
to get

Wn−1Wn−2Wn−3Wn−4 . . .W2W1Wn−2Wn−1.

We can reverse Wn−1Wn−2 . . .W2W1 to get

W1W2 . . .Wn−1Wn−2Wn−1.

Notice that this is the same expression we started with, since Wn−2Wn−1 is Wn. From
the inductive step, we showed that WnWn−1 . . .W1 = W1W2 . . .Wn. We are done, since
we have completed the inductive step.

Remark 4.4. The reason we used strong induction here is so we can reverse expressions
such as W1W2 . . .Wn−3 to try to get the original expression, completing the inductive step.
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]5 Problems

Exercise 5.1 (Sum of first N squares). Prove that 1 + 2 + · · ·+ n2 = n(n+1)(2n+1)
6 .

Exercise 5.2 (Sum for first N cubes). Prove that 1 + 2 + · · ·+ n3 = n2(n+1)2

4 .

Exercise 5.3 (Subsets of a Set). Show that a set of n elements has 2n subsets.

Exercise 5.4. Prove that n! > 2n for sufficiently large values of n.

Exercise 5.5 (Diagonals of a Polygon). Show that an n−sided polygon has n(n−3)
2

diagonals.

Exercise 5.6. Consider the Fibonacci sequence where F0 = 0, F1 = 1, Fn = Fn−1 +Fn−2

for all positive integers n. Prove that

F0 + F1 + F2 + · · ·+ Fn = Fn+2 − 1.

Exercise 5.7 (Explicit Form for Fibonacci Sequence). The Fibonacci sequence is defined
as Fn+2 = Fn+1 + Fn, where n ≥ 0 and F0 = 0, F1 = 1. Show that

Fn =
1√
5

[(
1 +
√

5

2

)n

−

(
1−
√

5

2

)n]
.

Exercise 5.8. Prove that for any natural number n ≥ 6, then

(n + 3)3 ≤ 3n.

Exercise 5.9 (2009 AIME). Let m be the number of solutions in positive integers to the
equation 4x + 3y + 2z = 2009, and let n be the number of solutions in positive integers
to the equation 4x + 3y + 2z = 2000. Find the remainder when m− n is divided by 1000.

Exercise 5.10 (CALT April Fools Contest). Prove that the summation

k∑
an=1

an∑
an−1=1

· · ·
a3∑

a2=1

a2∑
a1=1

a1

is equivalent to
k(k + 1)(k + 2) . . . (k + n)

(n + 1)!
.

Exercise 5.11 (PiE). Prove that if (Ai)1≤i≤n are finite sets, then:∣∣∣∣∣
n⋃

i=1

Ai

∣∣∣∣∣ =

n∑
i=1

|Ai|−
∑
i<j

|Ai ∩Aj |+
∑

i<j<k

|Ai ∩Aj ∩Ak|− · · · + (−1)n−1 |A1 ∩ · · · ∩An| .

Exercise 5.12 (1981 IMO). Let 1 ≤ r ≤ n and consider all subsets of r elements of the
set {1, 2, . . . , n}. Each of these subsets has a smallest member. Let F (n, r) denote the
arithmetic mean of these smallest numbers; prove that
F (n, r) = n+1

r+1 .
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